Copied to
clipboard

G = C42.444D4order 128 = 27

77th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.444D4, C42.323C23, C4○D49D4, D42(C2×D4), Q82(C2×D4), C4⋊C83C22, C4⋊D818C2, C45(C8⋊C22), C4⋊SD162C2, (C4×D4)⋊83C22, (C2×D8)⋊16C22, (C2×C8).13C23, (C4×Q8)⋊79C22, C4.69(C22×D4), C4⋊C4.379C23, C4⋊M4(2)⋊4C2, (C2×C4).242C24, (C2×SD16)⋊7C22, (C2×D4).51C23, C23.654(C2×D4), (C22×C4).422D4, C4.104(C4⋊D4), D4⋊C416C22, C23.37D46C2, (C2×Q8).359C23, C41D4.138C22, C22.77(C4⋊D4), (C22×C4).972C23, (C2×C42).811C22, C22.502(C22×D4), (C22×D4).338C22, (C2×M4(2)).49C22, C42⋊C2.311C22, (C4×C4○D4)⋊7C2, (C2×C41D4)⋊16C2, (C2×C8⋊C22)⋊15C2, C4.152(C2×C4○D4), C2.60(C2×C4⋊D4), C2.16(C2×C8⋊C22), (C2×C4).1421(C2×D4), (C2×C4).273(C4○D4), (C2×C4○D4).298C22, SmallGroup(128,1770)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.444D4
C1C2C4C2×C4C22×C4C2×C4○D4C4×C4○D4 — C42.444D4
C1C2C2×C4 — C42.444D4
C1C22C2×C42 — C42.444D4
C1C2C2C2×C4 — C42.444D4

Generators and relations for C42.444D4
 G = < a,b,c,d | a4=b4=d2=1, c4=b2, ab=ba, cac-1=dad=a-1, cbc-1=dbd=b-1, dcd=b2c3 >

Subgroups: 676 in 292 conjugacy classes, 104 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, D4⋊C4, C4⋊C8, C2×C42, C2×C42, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C41D4, C41D4, C2×M4(2), C2×D8, C2×SD16, C8⋊C22, C22×D4, C22×D4, C2×C4○D4, C23.37D4, C4⋊M4(2), C4⋊D8, C4⋊SD16, C4×C4○D4, C2×C41D4, C2×C8⋊C22, C42.444D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C8⋊C22, C22×D4, C2×C4○D4, C2×C4⋊D4, C2×C8⋊C22, C42.444D4

Smallest permutation representation of C42.444D4
On 32 points
Generators in S32
(1 18 30 10)(2 11 31 19)(3 20 32 12)(4 13 25 21)(5 22 26 14)(6 15 27 23)(7 24 28 16)(8 9 29 17)
(1 32 5 28)(2 29 6 25)(3 26 7 30)(4 31 8 27)(9 23 13 19)(10 20 14 24)(11 17 15 21)(12 22 16 18)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10)(2 9)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(17 31)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)(24 32)

G:=sub<Sym(32)| (1,18,30,10)(2,11,31,19)(3,20,32,12)(4,13,25,21)(5,22,26,14)(6,15,27,23)(7,24,28,16)(8,9,29,17), (1,32,5,28)(2,29,6,25)(3,26,7,30)(4,31,8,27)(9,23,13,19)(10,20,14,24)(11,17,15,21)(12,22,16,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,9)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,32)>;

G:=Group( (1,18,30,10)(2,11,31,19)(3,20,32,12)(4,13,25,21)(5,22,26,14)(6,15,27,23)(7,24,28,16)(8,9,29,17), (1,32,5,28)(2,29,6,25)(3,26,7,30)(4,31,8,27)(9,23,13,19)(10,20,14,24)(11,17,15,21)(12,22,16,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,9)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,32) );

G=PermutationGroup([[(1,18,30,10),(2,11,31,19),(3,20,32,12),(4,13,25,21),(5,22,26,14),(6,15,27,23),(7,24,28,16),(8,9,29,17)], [(1,32,5,28),(2,29,6,25),(3,26,7,30),(4,31,8,27),(9,23,13,19),(10,20,14,24),(11,17,15,21),(12,22,16,18)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10),(2,9),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(17,31),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25),(24,32)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A···4H4I···4P8A8B8C8D
order1222222222224···44···48888
size1111224488882···24···48888

32 irreducible representations

dim1111111122224
type++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4C4○D4C8⋊C22
kernelC42.444D4C23.37D4C4⋊M4(2)C4⋊D8C4⋊SD16C4×C4○D4C2×C41D4C2×C8⋊C22C42C22×C4C4○D4C2×C4C4
# reps1214411222444

Matrix representation of C42.444D4 in GL6(𝔽17)

13150000
040000
0016000
0001600
0000160
0000016
,
100000
010000
0001600
001000
0000016
000010
,
420000
1130000
0000016
0000160
0016000
000100
,
13150000
1640000
0016000
000100
0000016
0000160

G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,15,4,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[4,1,0,0,0,0,2,13,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,16,0,0,0,0,16,0,0,0],[13,16,0,0,0,0,15,4,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,16,0] >;

C42.444D4 in GAP, Magma, Sage, TeX

C_4^2._{444}D_4
% in TeX

G:=Group("C4^2.444D4");
// GroupNames label

G:=SmallGroup(128,1770);
// by ID

G=gap.SmallGroup(128,1770);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,2019,248,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=b^2,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=b^2*c^3>;
// generators/relations

׿
×
𝔽